
3/21/2020

1

PHP
PHP Hypertext Preprocessor

Dr. Shaukat Ali

Department of Computer Science

University of Peshawar

2

http://server/path/file

 Usually when you type a URL in your
browser:
– Your computer looks up the server's IP

address using DNS
– Your browser connects to that IP address

and requests the given file
– The web server software (e.g. Apache)

grabs that file from the server's local file
system, and sends back its contents to
you

3/21/2020

2

 Some URLs actually specify programs that the
web server should run, and then send their
output back to you as the result:

https://webster.cs.washington.edu/cse190m/quote.php

 The above URL tells the
server webster.cs.washington.edu to run the
program quote2.php and send back its output

3

 It is used for making ‘dynamic
webpages’

 It is used for collecting form data from
users using forms

 It is used to connect with databases
– Adding and modifying data

 User verification

 Etc. 4

3/21/2020

3

 Server-side pages are programs written using
one of many web programming
languages/frameworks
– examples: PHP, Java/JSP, Ruby on

Rails, ASP.NET, Python, Perl

 The web server contains software that allows it
to run those programs and send back their
output

 Each language/framework has its pros and cons
– we use PHP for server-side programming in

this course 5

 PHP stands for “PHP Hypertext Preprocessor”
 A Server-Side Scripting Language
 PHP is a widely used server side scripting

language
– PHP is used for dynamic developing web

applications.
 Provide different content depending on context
 Interface with other services: database, e-mail, etc
 Authenticate users
 Process form information

– Big applications like Wordpress, Facebook
was developed in PHP

6

3/21/2020

4

 Browser requests a .html file (static content): server
just sends that file

 Browser requests a .php file (dynamic content): server
reads it, runs any script code inside it, then sends result
across the network

7

8

 There are many other options for server-side
languages: Ruby on Rails, JSP, ASP.NET, etc.

 Why choose PHP?
– Free and Open source: Anyone can run a PHP-enabled

server free of charge
– Compatible: Supported by most popular operating

systems and web servers and supports all major
Database Management Systems

– Simple: Lots of built-in functionality, familiar syntax,
and many libraries

– Available: Installed on UW's servers (Dante, Webster)
and most commercial web hosts

– Well-Documented: type php.net/functionName in
browser Address bar to get docs for any function

3/21/2020

5

 Installing a webserver
– Apache
– Microsoft IIS

 Installing PHP

 Installing DBMS
– MySQL

 Each webserver and DBMS has its own configuration
settings.

 One easy way is to use WAMP
– Linux, Apache, MySQL and PHP as one package

 WAMP alternatives available for Windows
– WinLAMP
– LAMP
– XAMPP. Etc.

 We will use WAMP.
 Download and install.

10

3/21/2020

6

 In each variation of WAMP, you get one folder to put
the PHP projects in.
– www folder

 After installation of Webserver software, you can test
the server by typing the following IP address in a web
browser:

– Localhost
– 127.0.0.1

 If the webserver is successfully installed and running
then you will get see a default page

11

 In WAMP, the default directory to put PHP (and
HTML) pages is

 wamp64\www
– How to work with it

– Create a folder inside www e.g., phy_files
– Place files in it with a .php extension
– For example

– If you place index.php in a folder named say
“project1” then it will be accessible by typing
http://localhost/project1/index.php

12

3/21/2020

7

 PHP file has an extension .php instead of .html
 PHP code is also be embedded in HTML code
 when a page request arrives, web server

recognizes PHP content by the file extension
 The server execute the PHP code with in the

page and substitutes the PHP output as HTML
code

 The server sends back an HTML code to the
client.

 The client never receives PHP code
– Client only gets HTML and Javascript code

13

 PHP code is enclosed in delimiters
– starts with <?php
– and ends with ?>

 Each statement ends with a semicolon‘;’
 PHP keywords are not case-sensitive
 But PHP variable names are case-sensitive

14

3/21/2020

8

15

The following contents could go into a
file hello.php:

 In PHP, a variable starts with the $ sign, followed by
the name of the variable
– Variable Naming Rules

– A variable name must start with a letter or the underscore
character

– A variable name cannot start with a number
– A variable name can only contain alpha-numeric characters

and underscores (A-z, 0-9, and _)
– Variable names are case-sensitive ($age and $AGE are two

different variables)
– Variable names longer than 30 characters are somewhat

impractical
 PHP is loosely Typed language

– That is we do not declare, initialize and specify data type of a
variable

16

3/21/2020

9

Examples
$my_first_variable
$age = 16;
$user_name = "PinkHeartLuvr78";
$this_class_rocks = TRUE;

<?PHP
$strVar = “Hello World”;
$numVar = 10;
$floatVar = 3.14;

?>

 But PHP enables you to use variables at any point
just by naming them 17

 Strongly Typed Languages
– Requires explicit declaration of variable i.e.,

data type of variable
 Generate error it used in incorrect operation

 Loosely Typed Languages
– Don’t require declaration of variable type

– Automatically convert variable type
depending upon the context in which they
are used, and the operation performed on
their values

18

3/21/2020

10

 We use echo and print statements to
output strings. See example below:

echo “Welcome to PHP Programming”;

19

 Printing variables:

20

3/21/2020

11

 PHP variables also scopes like Java or Javascript

– Global scope
 A variable declared outside a function has a

GLOBAL scope and can only be accessed any
where in the program – in any function

– Local scope
 A variable declared inside a function has local

scope - can be accessed inside the function

21

22

• We can access Global variable from inside a function or
anther local scope

• To get at outside variables from inside a
function

• To access Global variables from inside a function, use
the keyword global

3/21/2020

12

 String
 Integer
 Float (or double)
 Boolean

– $x = true;
 Array

– We use the function array to create arrays.

$cars = array("Volvo","BMW","Toyota");
$numbers = array(1, 2, 3, 4, 5);
– Array is accessed using index number
– $numbers[0]
– $numbers[1]
– $numbers[3] 23

 PHP includes built-in functions for casting a
type

– The gettype() function returns type of variable

– Also contain functions to check for specific type
e.g., is_string(), is_int()

 Example
<?php
$my_var = 1995;
echo “The variable is now a “ . gettype($my_var);
$my_var = settype($my_var, “string”); //convert to string
Echo “The variable is now a “ . gettype($my_var);
?>

 Temporary Type Casting
$ age = "21“ 24

3/21/2020

13

 Single line:

//comments

 Multiline comment:

/*
Comments
comments
*/

25

 Constants are like variables except that once they are
defined they cannot be changed or undefined.

 There is
name.

 By convention, constant identifiers are always UPPERCASE

 Constant is created using define()function.

define(name,value,case-insensitive)
– name: Specifies the name of the constant
– value: Specifies the value of the constant
– case-insensitive: Specifies whether the constant name

should be case-insensitive. Default is false 26

3/21/2020

14

 constants are automatically global across the
entire program

– PHP constant examples

// Constant LENGTH is defined
define(“LENGTH", 50);
echo LENGTH;

// Constant LENGTH is defined as case insensitive
define("LENGTH", 50, true);
echo Length;

// Constant GREETING is defined.
define("GREETING","Welcome to W3Schools“ ,true);
echo greeting;

27

 PHP divides the operators in the following
groups:

– Arithmetic operators
 +, -, /, *, %, ** (power of, 2**3=8)

– Assignment operators
 =, +=, -=, …

– Comparison operators
 ==, === (equal value and type), !=, <,>, <= …

– Increment/Decrement operators
 ++, --,

– Logical operators
 and, or, &&, ||, !

– String operators
 . (concatenation), .= (concat. Assignment)

– Array operators

28

3/21/2020

15

 if
 if …else
 if … elseif… else

if ($marks > 50) {
echo “You passed!";

}

if ($marks > 50) {
echo “You passed!";

else
echo “You failed”;

29

30

switch ($x)
{
case 1:
echo "Number 1";
break;

case 2:
echo "Number 2";
break;

case 3:
echo "Number 3";
break;

default:
echo "No number between 1 and 3";
break;

}

3/21/2020

16

 Loops are like C
–
–
–

for ($x = 0; $x <= 10; $x++)

{
echo "The number is: $x
";

}

31

 Foreach loop is like in Javascript
– The foreach loop works only on arrays, and is used

to loop through each key/value pair in an array.

 For every loop iteration, the value of the current array element is
assigned to $value and the array pointer is moved by one, until it
reaches the last array element.

32

3/21/2020

17

 Function syntax:
function functionName()

{
code to be executed;

}

 Function Call
functionName();

 Function names are NOT case-sensitive.

33

 An argument is just like a variable.
 Arguments are specified after the function name,

inside the parentheses.
 You can add as many arguments as you want, just

separate them with a comma.

34

3/21/2020

18

35

36

This example adds different
punctuation.

3/21/2020

19

 Copy of actual parameters is passed into
the formal parameters

 If the value of a variable within the function
is changed,

of the function.

37

<?php

function increment($num)
{

$num = $num + 1;
echo "The function output is =".$num."
";
}

$n = 1;
echo "The value before calling is=".$n."
";
increment($n); /* Output 2 */

echo "The value after calling is=".$n; /* Output 1 */

?>

The value before calling is=1
The function output is =2
The value after calling is=1

 Address is passed instead of value
 we prepend an to the

argument name in the function definition.
 Any change in variable value within a

function can reflect the change in
the original value of a variable

38

<?php

function increment(&$num)
{

$num = $num + 1;
echo "The function output is =".$num."
";
}

$n = 1;
echo "The value before calling is=".$n."
";
increment($n); /* Output 2 */

echo "The value after calling is=".$n; /* Output 1 */

?>

The value before calling is=1
The function output is =2
The value after calling is= 2

3/21/2020

20

 A function may define C++-style default values
for scalar arguments

 The default value must be a constant
expression, not (for example) a variable, or a
function call.

 Using default arguments, defaults should be
on right side of any non-default arguments;
otherwise, things will not work as expected.

39

<?php
function makecoffee($type = "cappuccino")
{

return "Making a cup of $type.\n";
}
echo makecoffee() ."
";
echo makecoffee(null)."
";
echo makecoffee("espresso")."
";
?>

Making a cup of cappuccino.
Making a cup of .
Making a cup of espresso.

 In PHP, the array() constructor is used to
create an array:

 Three types of arrays:
 Indexed arrays:

– Arrays with a numeric index
– Array elements addressed by a number
– $colors = array('red','blue','green','yellow');

 Associative arrays:
– Arrays with named keys
– Array elements addressed by a name
– $age = array("Peter"=>"35", "Ben"=>"37",
"Joe"=>"43");

 Multidimensional arrays:
– Arrays containing one or more arrays

40

3/21/2020

21

 Concatenation Operator (.)
– Concatenation operator (.) can be used

between string values to join them
together.

<?php
$first_name = “Shaukat”;

$last_name = “Ali”;

$whole_Name = $first_name . “ “ . $last_name;

Echo “First name plus last name =
$whole_name”;

?>

41

 Strlen() Function
– The strlen() function find the length of a

string – it counts all characters in the string
and returns the total

<?php
$first_name = “Shaukat”;

$last_name = “Ali”;

$whole_Name = $first_name . “ “ . $last_name;

$string_length = strlen($whole_name);

Echo “Length of string is = $string_length
”;

?>
42

3/21/2020

22

 Strstr () Function
– The strstr() function gets any part of a

string that is after the first instance of a
particular character or string within a string

<?php
$first_name = “Shaukat”;

$last_name = “Ali”;

$whole_name = $first_name . “ “ . $last_name;

$part_after_space = strstr($whole_name, “ “);

Echo “The part of the string after the space is
$part_after_space”;

?>
43

 Strpos () Function
– The strops () function determines a search

string exist within a searched string and
retunes a numeric value indicating location
at the search string begins

<?php
$first_name = “Shaukat”;

$last_name = “Ali”;

$whole_name = $first_name . “ “ . $last_name;

$letter_position = strpos($whole_name, “a“);

Echo “The position of the first letter s is
$letter_position”;

?> 44

3/21/2020

23

 The $_GET variable is an array of variable
names and values sent by the HTTP GET
method.

 The $_GET variable is used to collect values
from a form with method="get".
Information sent from a form with the GET
method is visible to everyone (it will be
displayed in the browser's address bar) and
it has limits on the amount of information
to send (max. 100 characters).

45

<form action="welcome.php" method="get">
Name: <input type="text" name="name" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

46

When the user clicks the "Submit" button, the URL sent could look
something like this:

http://www.w3schools.com/welcome.php?name=Peter&age=37

The "welcome.php" file can now use the $_GET variable to catch the
form data (notice that the names of the form fields will
automatically be the ID keys in the $_GET array):

Welcome <?php echo $_GET["name"]; ?>.

You are <?php echo $_GET["age"]; ?> years old!

3/21/2020

24

 The $_POST variable is an array of variable
names and values sent by the HTTP POST
method.

 The $_POST variable is used to collect
values from a form with method="post".
Information sent from a form with the POST
method is invisible to others and has no
limits on the amount of information to
send.

47

<form action="welcome.php" method=“post">
Name: <input type="text" name="name" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

48

When the user clicks the "Submit" button, the URL sent could look
something like this:

http://www.w3schools.com/welcome.php

The "welcome.php" file can now use the $_POST variable to catch
the form data (notice that the names of the form fields will
automatically be the ID keys in the $_POST array):

Welcome <?php echo $_POST["name"]; ?>.

You are <?php echo $_POST["age"]; ?> years old!

3/21/2020

25

 A cookie is a small text file that lets you store a small
amount of data (nearly 4KB) on the user's computer.

 They are typically used to keeping track of information
such as username that the site can retrieve to
personalize the page when user visit the website next
time.

 Once a cookie has been set, all page requests that
follow return the cookie name and value.

 A cookie can only be read from the domain that it has
been issued from. For example, a cookie set using the
domain www.xyz.com can not be read from the
domain www.abc.com.

49

 PHP provided function to set a
cookie. Set before the <HTML> tag.

 This function requires arguments

50

setcookie(name, value, expire, path, domain, secure, httponly)

name Name of the cookie and is stored in an environment variable called
HTTP_COOKIE_VARS. This variable is used while accessing cookies.

String

value Value of the cookie, stored in clients computer. String

expire After this time cookie will become inaccessible. The default value is
0. If this parameter is not set then cookie will automatically expire
when the Web Browser is closed.

Integer

path Specify the path on the server for which the cookie will be available.
If set to /, the cookie will be available within the entire domain.

String

domain To which domain the cookie is available. For example,
www.example.com

String

secure If set true, the cookie is available over a secure connection only. Boolean

httponly If set true, the cookie is available over HTTP protocol only. Scripting
languages like JavaScript won't be able to access the cookie.

Boolean

3/21/2020

26

 Example:
– use setcookie() function to create a cookie

named and assign the value
to it.

– It also specify that the cookie will expire
after (30 days * 24 hours * 60 min
* 60 sec).

–

– All the arguments except the name are optional.

– You may also replace an argument with an empty string ("") in order to skip
that argument, however to skip the expire argument use a zero (0) instead,
since it is an integer.

51

<?php
setcookie("username", "John Carter", time()+30*24*60*60);
?>

<?php
setcookie("name", "Paleey Khan", time()+3600, "/","", 0);
setcookie("age", "5", time()+3600, "/", "", 0);

?>
<html>

<head>
<title>Setting Cookies with PHP</title>

</head>

<body>
<?php echo "Set Cookies"?>

</body>

</html>

52

3/21/2020

27

 The PHP $_COOKIE super global variable is
used to retrieve a cookie value.

 It's a good practice to check whether a
cookie is set or not before accessing its
value.
– To do this you can use PHP isset() function

53

<?php

if(isset($_COOKIE["name"])){
echo $_COOKIE["name"]. "
";

echo $_COOKIE["age"] . "
";

} else{
echo "Welcome Guest!";

}
?>

 You can delete a cookie by calling the
same setcookie() function with the cookie
name and any value (such as an empty
string) - however this time you need the set
the expiration date in the past

54

<?php
setcookie("name", "", time()- 60, "/","", 0);
setcookie("age", "", time()- 60, "/","", 0);

?>
<html> <head>

<title>Deleting Cookies with PHP</title>
</head>
<body>

<?php
echo "Deleted Cookies" ;

?>
</body> </html>

3/21/2020

28

 Cookies can have security issues
– Cookies are stored on user's computer it is

possible for an attacker to easily modify a cookie
content to insert potentially harmful data in your
application that might break your application

 Each time a browser requests a URL to the
server

– All the cookie data for a website is automatically
sent to the server within the request

– It means if you have stored 5 cookies on user's
system, each having 4KB in size, the browser
needs to upload 20KB of data each time the user
views a page, which can affect your site's
performance

55

 A session creates a global file in a temporary
directory on the server

– Registered session variables and their
values are stored

– Data will be available to all pages on the
site during that visit

 Sessions have the capacity to store
relatively large data compared to cookies

 The location of the temporary file is
determined by a setting a variable in
the file called

56

3/21/2020

29

 When a session is started the following
things happen

– PHP first creates a unique identifier for that
particular session called which is a
random string of 32 hexadecimal numbers such as
3c7foj34c3jj973hjkop2fc937e3443
 The is used to retrieve stored values

– A cookie called is automatically sent to
the user's computer to store unique
string.

– A session file is automatically created on the server
in the designated temporary directory and bears
the name of the prefixed by “sess”. For
example, sess_3c7foj34c3jj973hjkop2fc937e3443.

 57

 When a PHP script wants to retrieve the value
from a session variable

– PHP automatically gets the string from
the cookie

– Looks in its temporary directory for the file bearing
that name and a validation can be done by
comparing both values

 A session ends when the user loses the
browser or after leaving the site
– The server will terminate the session after a

predetermined period of time of absence of
user activity, commonly 30 minutes duration
 You can adjust this timeout duration by changing the

value of session.gc_maxlifetime variable in the PHP
configuration file (php.ini).

58

3/21/2020

30

 A PHP session is easily started by making a
call to the function
– This function first checks if a session is

already started and if none is started then it
starts one

– It is recommended to put the call
to at the beginning of the
page

 Session variables are stored in array
called . These variables can be
accessed during lifetime of a session

59

 The following example starts a session then
register a variable called that is
incremented each time the page is visited
during the session

 Make use of function to check if
session variable is already set or not

60

3/21/2020

31

61

Output will be

 A PHP session can be destroyed
by function
– This function does not need any argument

and a single call can destroy all the session
variables

 If you want to destroy a single session
variable then you can use function
to unset a session variable.

62

3/21/2020

32

 Both cookies and sessions are used for
storing persistent data. But there are
differences for sure.
– Sessions are stored on server side. Cookies

are on the client side.

– Sessions are closed when the user closes
his browser. For cookies, you can set time
that when it will be expired.

– Sessions are safe than cookies. Because,
since stored on client's computer, there are
ways to modify or manipulate cookies.

63

 In order to store or access the data inside a
MySQL database, you first need to connect to
the MySQL database server

 PHP offers two different ways to connect to
MySQL server:

– (the "i" stands for improved)

–

 PDO will work on 12 different database
systems, whereas MySQLi will only work with
MySQL databases.

– MySQLi extension however provides an easier way
to connect to, and execute queries on, a MySQL
database server.

64

3/21/2020

33

 In PHP you can easily do this using
the mysqli_connect() function

 All communication between PHP and the
MySQL database server takes place through
this connection
–

$link = mysqli_connect(“hostname", "username",
"password", "database");

 Mysqli_connect() returns a boolean value
– Ture if successfully connected

– False if not connected 65

66

<?php

/* Attempt MySQL server connection. Assuming you are running MySQL
server with default setting (user 'root' with no password) */

$link = mysqli_connect("localhost", "root", "");

// Check connection
if($link === false)
{
die("ERROR: Could not connect. " . mysqli_connect_error());
}
else
{
// Print host information
echo "Connect Successfully. Host info: " . mysqli_get_host_info($link);
}

?>

3/21/2020

34

 The connection to the MySQL database
server will be closed automatically as soon
as the execution of the script ends

 However, if you want to close it earlier you
can do this by simply calling the
PHP mysqli_close() function

67

68

<?php

/* Attempt MySQL server connection. Assuming you are running MySQL
server with default setting (user 'root' with no password) */

$link = mysqli_connect("localhost", "root", "");

// Check connection
if($link === false)
{
die("ERROR: Could not connect. " . mysqli_connect_error());
}
else
{
// Print host information
echo "Connect Successfully. Host info: " . mysqli_get_host_info($link);
}

// Close connection
mysqli_close($link);
?>

3/21/2020

35

 The CREATE DATABASE query is used to
create a new database in MySQL

 Execute the SQL query through passing it to
the PHP mysqli_query() function to finally
create database

69

// Attempt create database query execution
$sql = "CREATE DATABASE demo";
if(mysqli_query($link, $sql))
{
echo "Database created successfully";
}
Else
{
echo "ERROR: Could not able to execute $sql. " . mysqli_error($link);
}

<?php
/* Attempt MySQL server connection. Assuming you are running MySQL
server with default setting (user 'root' with no password) */
$link = mysqli_connect("localhost", "root", "");

// Check connection
if($link === false){

die("ERROR: Could not connect. " . mysqli_connect_error());
}

// Attempt create database query execution
$sql = "CREATE DATABASE demo";
if(mysqli_query($link, $sql)){

echo "Database created successfully";
} else{

echo "ERROR: Could not able to execute $sql. " . mysqli_error($link);
}

// Close connection
mysqli_close($link);
?> 70

3/21/2020

36

 The SQL CREATE TABLE statement is used
to create a table in database.

 Steps
– First make a SQL query using the CREATE

TABLE statement

– Execute the SQL query through passing it to
the PHP mysqli_query() function to finally
create table

71

<?php

/* Attempt MySQL server connection. Assuming you are running MySQL server with
default setting (user 'root' with no password) */

$link = mysqli_connect("localhost", "root", "", "demo");

// Check connection
if($link === false) {
die("ERROR: Could not connect. " . mysqli_connect_error()); }

// Attempt create table query execution
$sql = "CREATE TABLE persons(id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

first_name VARCHAR(30) NOT NULL, last_name VARCHAR(30) NOT NULL, email
VARCHAR(70) NOT NULL UNIQUE)";

if(mysqli_query($link, $sql))
{ echo "Table created successfully."; }
Else
{ echo "ERROR: Could not able to execute $sql. " . mysqli_error($link); }

// Close connection
mysqli_close($link);
?>

72

3/21/2020

37

 The INSERT INTO statement is used to
insert new rows in a database table.

 Steps
– First make a SQL query using the INSERT

INTO statement with appropriate values

– Second execute the insert query through
passing it to the mysqli_query() function to
insert data in table

73

<?php
/* Attempt MySQL server connection. Assuming you are running

MySQL server with default setting (user 'root' with no password)
*/

$link = mysqli_connect("localhost", "root", "", "demo");
// Check connection
if($link === false)
{ die("ERROR: Could not connect. " . mysqli_connect_error()); }
// Attempt insert query execution
$sql = "INSERT INTO persons (first_name, last_name, email) VALUES

('Peter', 'Parker', 'peterparker@mail.com')";
if(mysqli_query($link, $sql))
{ echo "Records inserted successfully."; } else
{ echo "ERROR: Could not able to execute $sql. " .

mysqli_error($link); }
// Close connection
mysqli_close($link);
?>

74

3/21/2020

38

 The SQL SELECT statement is used to select
the records from database tables.

 Its basic syntax is as follows:

SELECT column1_name, column2_name, columnN_name FROM table_name;

 Steps:
– First make a SQL query using

the SELECT statement

– Secondexecute this SQL query through
passing it to the mysqli_query() function to
retrieve the table data

75

// Attempt select query execution
$sql = "SELECT * FROM persons";
if($result = mysqli_query($link, $sql)) {

if(mysqli_num_rows($result) > 0) {

while($row = mysqli_fetch_array($result)) {
Echo $row['id'] . “ “ . $row['first_name'] . “ “.

$row['last_name'] . “ “ . $row['email'] . "
“; }

// Free result set
mysqli_free_result($result); }
else { echo "No records matching your query were

found."; }
else { echo "ERROR: Could not able to execute $sql. " .

mysqli_error($link); } 76

3/21/2020

39

 The basic syntax of the DELETE statement
can be given with:

DELETE FROM table_name WHERE column_name=some_value

 Steps:
– First make a SQL query using

the DELETE statement and WHERE clause

– Second execute this query through passing
it to the PHP mysqli_query() function to
delete the tables records

77

<?php
/* Attempt MySQL server connection. Assuming you are running

MySQL server with default setting (user 'root' with no password)
*/

$link = mysqli_connect("localhost", "root", "", "demo");
// Check connection
if($link === false)
{ die("ERROR: Could not connect. " . mysqli_connect_error()); }
// Attempt delete query execution
$sql = "DELETE FROM persons WHERE first_name='John'";
if(mysqli_query($link, $sql))
{ echo "Records were deleted successfully."; }
Else
{ echo "ERROR: Could not able to execute $sql. " .

mysqli_error($link); }
// Close connection
mysqli_close($link);
?>

78

